Skip to main content
Log in

Multidrug-Resistant Escherichia coli in Costa Rican Domestic Wastewater Treatment Plants Maintains Horizontal Transfer Capacity of Resistance Determinants in Effluents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study was conducted to evidence the dissemination potential of antibiotic resistance genetic elements in E. coli isolates of Costa Rican domestic wastewater treatment plants (WWTPs). Few studies have addressed this phenomenon in WWTPs in Central America. Phenotypical resistance profiles to β-lactams, quinolones, aminoglycosides, phenicols, tetracyclines, and folate pathway inhibitors of 133 Escherichia coli isolates from the influent and effluent of two urban WWTPs located in the Greater Metropolitan Area of Costa Rica were described. Thirty multidrug-resistant profiles were identified and grouped into 15 genetic clones by ERIC-PCR; 6 of 15 genetic clones were from effluents. Six of the seven examined genes (sulI, sulII, intI1, intI2, blaTEM, and tetA) were found in multidrug-resistant isolates, whereas blaOXA was absent. The horizontal gene conjugation test confirmed the gene transfer capacity of all tested isolates n = 8. Multidrug-resistant isolates in effluents with horizontal gene transfer capacity suggest that Costa Rican WWTPs represent spots related to antibiotic resistance spread to the environment. In domestic WWTPs, we found that nearly 22% of E. coli isolates presented a multidrug-resistant phenotype capable of transferring their resistance determinants by conjugation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Akhil, D., Lakshmi, D., Senthil Kumar, P., Vo, D.-V.N., & Kartik, A. (2021). Occurrence and removal of antibiotics from industrial wastewater. Environmental Chemistry Letters, 19(2), 1477–1507. https://doi.org/10.1007/s10311-020-01152-0

    Article  CAS  Google Scholar 

  • Alcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., … McArthur, A. G. (2022). CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research. https://doi.org/10.1093/NAR/GKAC920

  • Alsultan, A., & Elhadi, N. (2022). Evaluation of ERIC-PCR method for determining genetic diversity among Escherichia coli isolated from human and retail imported frozen shrimp and beef. International Journal of Food Contamination, 9(1), 1–12. https://doi.org/10.1186/S40550-022-00098-1/TABLES/2

    Article  Google Scholar 

  • Amaya, E., Reyes, D., Paniagua, M., Calderón, S., Rashid, M. U., Colque, P., Kühn, I., Möllby, R., Weintraub, A., & Nord, C. E. (2012). Antibiotic resistance patterns of Escherichia coli isolates from different aquatic environmental sources in León, Nicaragua. Clinical Microbiology and Infection, 18(9). https://doi.org/10.1111/j.1469-0691.2012.03930.x

  • American Public Health Association (APHA), American Water Works Association (AWWA), & Water Environment Environment (WEF). (2017). Standard Methods for Examination of Water and Wastewater. (R. Baird, A. Eaton, & E. Rice, Eds.; 23rd ed.). American Public Health Association Inc.

  • Aristizábal-Hoyos, A. M., Rodríguez, E. A., Arias, L., & Jiménez, J. N. (2019). High clonal diversity of multidrug-resistant and extended spectrum beta-lactamase-producing Escherichia coli in a wastewater treatment plant. Journal of Environmental Management, 245(May), 37–47. https://doi.org/10.1016/j.jenvman.2019.05.073

    Article  CAS  Google Scholar 

  • Barrantes, K., McCoy, C., & Achí, R. (2010). Detection ofShigella in lettuce by the use of a rapid molecular assaywith increased sensitivity. Brazilian Journal of Microbiology, 41(4), 993–1000.

    Article  Google Scholar 

  • Barrantes, K., Chacón, L., Solano, M., & Achí, R. (2014). Class 1 integrase and genetic cassettes bla oxa and bla tem among multi-drug resistant Shigella isolates in Costa Rica. International Journal of Biological Sciences and Applications, 1(1), 24–27.

    Google Scholar 

  • Barrios-Hernández, M. L., Pronk, M., Garcia, H., Boersma, A., Brdjanovic, D., van Loosdrecht, M. C. M., & Hooijmans, C. M. (2020). Removal of bacterial and viral indicator organisms in full-scale aerobic granular sludge and conventional activated sludge systems. Water Research X, 6. https://doi.org/10.1016/j.wroa.2019.100040

  • Boucher, Y., Labbate, M., Koenig, J. E., & Stokes, H. W. (2007). Integrons: Mobilizable platforms that promote genetic diversity in bacteria. Trends in Microbiology, 15(7), 301–309. https://doi.org/10.1016/j.tim.2007.05.004

    Article  CAS  Google Scholar 

  • Centeno Mora, E., & Murillo Marín, A. (2019). Tipología de las tecnologías de tratamiento de aguas residuales ordinarias instaladas en Costa Rica. Revista de Ciencias Ambientales, 53(2), 97–110. https://doi.org/10.15359/rca.53-2.5

    Article  Google Scholar 

  • Chacón, L., Taylor, L., Valiente, C., Alvarado, I., & Cortés, X. (2012). A DNA pooling based system to detect Escherichia coli virulence factors in fecal and wastewater samples. Brazilian Journal of Microbiology, 43(4), 1319–1326.

    Article  Google Scholar 

  • Chacón, L., Arias-Andres, M., Mena, F., Rivera, L., Hernández, L., Achi, R., Garcia, F., & Rojas-Jimenez, K. (2021). Short-term exposure to benzalkonium chloride in bacteria from activated sludge alters the community diversity and the antibiotic resistance profile. Journal of Water and Health, 19(6), 895–906. https://doi.org/10.2166/wh.2021.171

    Article  Google Scholar 

  • Chacón, L., Barrantes, K., Santamaría-Ulloa, C., Solano, M., Reyes, L., Taylor, L., Valiente, C., Symonds, E. M., & Achí, R. (2020). A somatic coliphage threshold approach to improve the management of activated sludge wastewater treatment plant effluents in resource-limited regions. Applied and Environmental Microbiology, 86(17). https://doi.org/10.1128/AEM.00616-20

  • CLSI. (2018). Performance standards for antimicrobial susceptibility testing. (28th ed. C). Clinical and Laboratory Standards Institute.

  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433. https://doi.org/10.1128/MMBR.00016-10

    Article  CAS  Google Scholar 

  • Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., & Yu, G. (2015). Resistance integrons: Class 1, 2 and 3 integrons. Annals of Clinical Microbiology and Antimicrobials, 14, 45. https://doi.org/10.1186/s12941-015-0100-6

    Article  CAS  Google Scholar 

  • Domínguez, M., Miranda, C. D., Fuentes, O., de La Fuente, M., Godoy, F. A., Bello-Toledo, H., & González-Rocha, G. (2019). Occurrence of transferable integrons and suland dfrgenes among sulfonamide-and/or trimethoprim-resistant bacteria isolated from Chilean salmonid farms. Frontiers in Microbiology, 10(APR), 1–14. https://doi.org/10.3389/fmicb.2019.00748

    Article  Google Scholar 

  • Domínguez, D. C., Chacón, L. M., & Wallace, D. (2021). Anthropogenic activities and the problem of antibiotic resistance in Latin America: A water issue. Water (Switzerland), 13(19). https://doi.org/10.3390/w13192693

  • Everage, T. J., Boopathy, R., Nathaniel, R., LaFleur, G., & Doucet, J. (2014). A survey of antibiotic-resistant bacteria in a sewage treatment plant in Thibodaux, Louisiana, USA. International Biodeterioration and Biodegradation, 95(PA), 2–10. https://doi.org/10.1016/j.ibiod.2014.05.028

    Article  CAS  Google Scholar 

  • Fazel, F., Jamshidi, A., & Khoramian, B. (2019). Phenotypic and genotypic study on antimicrobial resistance patterns of E. coli isolates from bovine mastitis. Microbial Pathogenesis, 132(August 2018), 355–361. https://doi.org/10.1016/j.micpath.2019.05.018

    Article  CAS  Google Scholar 

  • Garcia, S., Wade, B., Bauer, C., Craig, C., Nakaoka, K., & Lorowitz, W. (2007). The effect of wastewater treatment on antibiotic resistance in Escherichia coli and Enterococcus sp. Water Environment Research, 79(12), 2387–2395. https://doi.org/10.2175/106143007x183826

    Article  CAS  Google Scholar 

  • Goossens, H., Ferech, M., Vanderstichele, R., & Elserviers, M. (2005). Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. The Lancet, 365(9459), 579–587. https://doi.org/10.1016/S0140-6736(05)70799-6

    Article  Google Scholar 

  • Gündoǧdu, A., Long, Y. B., Vollmerhausen, T. L., & Katouli, M. (2011). Antimicrobial resistance and distribution of sul genes and integron-associated inti genes among uropathogenic Escherichia coli in Queensland, Australia. Journal of Medical Microbiology, 60(11), 1633–1642. https://doi.org/10.1099/jmm.0.034140-0

    Article  CAS  Google Scholar 

  • Heras, J., Domínguez, C., Mata, E., Pascual, V., Lozano, C., Torres, C., & Zarazaga, M. (2015). GelJ - A tool for analyzing DNA fingerprint gel images. BMC Bioinformatics, 16(1), 1–8. https://doi.org/10.1186/s12859-015-0703-0

    Article  CAS  Google Scholar 

  • Heras, J., Domínguez, C., Mata, E., Pascual, V., Lozano, C., Torres, C., & Zarazaga, M. (2016). A survey of tools for analysing DNA fingerprints. Briefings in Bioinformatics, 17(6), 903–911. https://doi.org/10.1093/bib/bbv016

    Article  CAS  Google Scholar 

  • Homma, K., Fukuchi, S., Kawabata, T., Ota, M., & Nishikawa, K. (2002). A systematic investigation identifies a significant number of probable pseudogenes in the Escherichia coli genome. Gene, 294(1–2), 25–33. https://doi.org/10.1016/S0378-1119(02)00794-1

    Article  CAS  Google Scholar 

  • Hu, R. M., Huang, K. J., Wu, L. T., Hsiao, Y. J., & Yang, T. C. (2008). Induction of L1 and L2 β-Lactamases of Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 52(3), 1198–1200. https://doi.org/10.1128/AAC.00682-07

    Article  CAS  Google Scholar 

  • Hubeny, J., Harnisz, M., Korzeniewska, E., Buta, M., Zieliński, W., Rolbiecki, D., Giebułtowicz, J., Nałęcz-Jawecki, G., & Płaza, G. (2021). Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water. PLOS ONE, 16(6), e0252691. https://doi.org/10.1371/journal.pone.0252691

    Article  CAS  Google Scholar 

  • Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology.

  • Jiang, H., Cheng, H., Liang, Y., Yu, S., Yu, T., Fang, J., & Zhu, C. (2019). Diverse mobile genetic elements and conjugal transferability of sulfonamide resistance genes (sul1, sul2, and sul3) in Escherichia coli isolates from Penaeus vannamei and pork from large markets in Zhejiang, China. Frontiers in Microbiology, 10(August). https://doi.org/10.3389/fmicb.2019.01787

  • Kerrn, M. B., Klemmensen, T., Frimodt-Møller, N., & Espersen, F. (2002). Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. Journal of Antimicrobial Chemotherapy, 50(4), 513–516. https://doi.org/10.1093/jac/dkf164

    Article  CAS  Google Scholar 

  • Korzeniewska, E., & Harnisz, M. (2013). Extended-spectrum beta-lactamase (ESBL)-positive Enterobacteriaceae in municipal sewage and their emission to the environment. Journal of Environmental Management, 128, 904–911. https://doi.org/10.1016/j.jenvman.2013.06.051

    Article  CAS  Google Scholar 

  • Levy, S. B., & Bonnie, M. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10(12S), S122–S129. https://doi.org/10.1038/nm1145

    Article  CAS  Google Scholar 

  • Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  Google Scholar 

  • Maynard, C., Fairbrother, J. M., Bekal, S., Sanschagrin, F., Levesque, R. C., Brousseau, R., Masson, L., Larivière, S., & Harel, J. (2003). Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149: K91 isolates obtained over a 23-year period from pigs. Antimicrobial Agents and Chemotherapy, 47(10), 3214–3221. https://doi.org/10.1128/AAC.47.10.3214-3221.2003

    Article  CAS  Google Scholar 

  • Mazel, D., Dychinco, B., Webb, V. A., & Davies, J. (2000). Antibiotic Resistance in the ECOR Collection: Integrons and Identification of a Novel aad Gene. Antimicrobial Agents and Chemotherapy, 44(6), 1568–1574. https://doi.org/10.1128/AAC.44.6.1568-1574.2000

    Article  CAS  Google Scholar 

  • Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., Dagot, C., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995. https://doi.org/10.1016/J.WATRES.2012.11.027

    Article  CAS  Google Scholar 

  • Ministerio de Ambiente, E. y T., & Ministerio de Salud. (2007). Reglamento de Vertido y Reuso de Aguas Residuales. No 33601-MINAE-S.

  • Mohammadali, M., & Davies, J. (2017). Antimicrobial resistance genes and wastewater treatment. In Antimicrobial Resistance in Wastewater Treatment Processes (pp. 1–13). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119192428.ch1

  • Moura, A., Jové, T., Ploy, M. C., Henriques, I., & Correia, A. (2012). Diversity of gene cassette promoters in class 1 integrons from wastewater environments. Applied and Environmental Microbiology, 78(15), 5413–5416. https://doi.org/10.1128/AEM.00042-12

    Article  CAS  Google Scholar 

  • O'Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations. Wellcome Collection. Attribution 4.0 International (CC BY 4.0).

  • Ramírez-Morales, D., Masís-Mora, M., Montiel-Mora, J. R., Cambronero-Heinrichs, J. C., Briceño-Guevara, S., Rojas-Sánchez, C. E., Méndez-Rivera, M., Arias-Mora, V., Tormo-Budowski, R., Brenes-Alfaro, L., & Rodríguez-Rodríguez, C. E. (2020). Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of wastewater treatment plants in Costa Rica. Science of The Total Environment, 746, 141200. https://doi.org/10.1016/j.scitotenv.2020.141200

    Article  CAS  Google Scholar 

  • Rosas, I., Salinas, E., Martínez, L., Cruz-Córdova, A., González-Pedrajo, B., Espinosa, N., & Amábile-Cuevas, C. F. (2015). Characterization of Escherichia coli isolates from an urban lake receiving water from a wastewater treatment plant in Mexico City: Fecal pollution and antibiotic resistance. Current Microbiology, 71(4), 490–495. https://doi.org/10.1007/s00284-015-0877-8

    Article  CAS  Google Scholar 

  • Silva, J., Castillo, G., Callejas, L., López, H., & Olmos, J. (2006). Frequency of transferable multiple antibiotic resistance amongst coliform bacteria isolated from a treated sewage effluent in Antofagasta, Chile. Electronic Journal of Biotechnology, 9(5), 533–540. https://doi.org/10.2225/vol9-issue5-fulltext-7

    Article  CAS  Google Scholar 

  • The Interagency Coordination Group on Antimicrobial Resistance (IACG). (2019). No time to wait: securing the future from drug-resistant infections. Report to the Secretary General of the United Nations.

  • Uluseker, C., Kaster, K. M., Thorsen, K., Basiry, D., Shobana, S., Jain, M., Kumar, G., Kommedal, R., & Pala-Ozkok, I. (2021). A review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: Mechanisms and perspectives. Frontiers in Microbiology, 12, 3003. https://doi.org/10.3389/FMICB.2021.717809/BIBTEX

    Article  Google Scholar 

  • Versalovic, J., Koeuth, T., & Lupski, R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Research, 19(24), 6823–6831. https://doi.org/10.1093/nar/19.24.6823

    Article  CAS  Google Scholar 

  • World Health Organization. (2018). WHO report on surveillance of antibiotic consumption: 2016–2018 early implementation.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Luis Rivera-Montero: investigation, formal analysis, visualization, methodology, and writing — original draft preparation. Gabriel Acuña-Espinola: investigation, formal analysis, and writing — original draft preparation. Kenia Barrantes: supervision, formal analysis, and writing — review and editing. Keilor Rojas: conceptualization and writing — review and editing. Luz Chacón: conceptualization, funding acquisition, formal analysis, supervision, project administration, and writing — review and editing.

Corresponding author

Correspondence to Luis Rivera-Montero.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 710 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Montero, L., Acuña, G., Barrantes, K. et al. Multidrug-Resistant Escherichia coli in Costa Rican Domestic Wastewater Treatment Plants Maintains Horizontal Transfer Capacity of Resistance Determinants in Effluents. Water Air Soil Pollut 234, 397 (2023). https://doi.org/10.1007/s11270-023-06401-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06401-w

Keywords

Navigation